Bipolar Proof Nets for MALL
نویسنده
چکیده
In this work we present a computation paradigm based on a concurrent and incremental construction of proof nets (de-sequentialized or graphical proofs) of the pure multiplicative and additive fragment of Linear Logic, a resources conscious refinement of Classical Logic. Moreover, we set a correspondence between this paradigm and those more pragmatic ones inspired to transactional or distributed systems. In particular we show that the construction of additive proof nets can be interpreted as a model for super-ACID (or co-operative) transactions over distributed transactional systems (typically, multi-databases).
منابع مشابه
Proof Nets for Unit-free Multiplicative-Additive Linear Logic (Extended abstract)
A cornerstone of the theory of proof nets for unit-free multiplicative linear logic (MLL) is the abstract representation of cut-free proofs modulo inessential commutations of rules. The only known extension to additives, based on monomial weights, fails to preserve this key feature: a host of cut-free monomial proof nets can correspond to the same cut-free proof. Thus the problem of finding a s...
متن کاملA characterization of MALL hypercoherent semantic correctness
We give a graph theoretical criterion on Multiplicative Additive Linear Logic (MALL) cut-free proof structures that exactly characterizes those whose interpretation is a hyperclique in Ehrhard’s hypercoherent spaces. This criterion is strictly weaker than the one given by Hughes and van Glabbeek characterizing proof nets (i.e. desequentialized sequent calculus proofs). We thus also give the fir...
متن کاملMALL proof nets identify proofs modulo rule commutation
The proof nets for MALL (Multiplicative Additive Linear Logic [2], without units) introduced in [4, 5] solved numerous issues with monomial proof nets [3], for example: • There is a simple (deterministic) translation function from cut-free proofs to proof nets. • Cut elimination is simply defined and strongly normalising. • Proof nets form a semi (i.e., unit-free) star-autonomous category with ...
متن کاملA Characterization of Hypercoherent Semantic Correctness in Multiplicative Additive Linear Logic
We give a graph theoretical criterion on multiplicative additive linear logic (MALL) cut-free proof structures that exactly characterizes those whose interpretation is a hyperclique in Ehrhard’s hypercoherent spaces. This criterion is strictly weaker than the one given by Hughes and van Glabbeek characterizing proof nets (i.e. desequentialized sequent calculus proofs). We thus also give the fir...
متن کاملGeometry of Interaction for MALL via Hughes-vanGlabbeek Proof-Nets
This paper presents, for the first time, a Geometry of Interaction (GoI) interpretation using Hughes-vanGlabbeek (HvG) proof-nets for multiplicative additive linear logic (MALL). Our GoI captures dynamically HvG’s geometric correctness criterion–the toggling cycle condition–in terms of algebraic operators. Our new ingredient is a scalar extension of the *-algebra in Girard’s *-ring of partial i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1210.5946 شماره
صفحات -
تاریخ انتشار 2012